

Ensemble of Radiative-Convective Equilibrium Simulations near the Marginal Boundary between Aggregated and Scattered Regimes

Ching-Shu Hung [hungchingshu@gmail.com] & Hiroaki Miura

Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo

Abstract

Ensemble of ten RCE simulations near the sharp transition zone between scattered and aggregated states are examined in SCALE-RM.

- Surprisingly, occurrence of self-aggregation (SA) is not deterministic near the marginal **boundary**: 6 aggregated & 4 scattered runs.
- Development of **moisture contrast in boundary** layer (BL) is the key indicator for SA. To reach aggregated state, a part of BL needs to be sufficiently dry and extensive to suppress convection triggered by cold pools.
- Marginal behavior of RCE near the transition boundary shows that **convective organization**, moisture aggregation, & large-scale overturning circulation each operate at different temporal and spatial scales.

Introduction

Dependence of SA on domain-size & resolution

Muller & Held (2012), Yanase et al. (2020)

RCE Regime Diagram

Line II & Line III : Muller and Held (2012) • SA only occurs when L > 200 km & H > 2 km

Line I : Yanase et al. (2020) • SA occurs regardless of H, if L > 500 km

How strict is the boundary line between aggregated & scattered regimes?

Model & Experiment Design

Model: SCALE-RM 5.3.6

RCEMIP (RCE model intercomparison project)

- fixed SST = **300K**, uniform solar insolation
- uniform initial conditions + random noises
- zero wind

Ensemble Simulation

- 5 runs each in Oakforest-PACS (OFP) & Fugaku
- square domain: **L = 384 km , H = 2 km**

Results

Evolution to distinct RCE states

FT variation dominates spatial variance of column moisture, but the **development of <u>BL moisture</u>** contrast is the key for the transition from scattered to aggregated state.

> What controls the expansion of dry patch?

Coppin & Bony (2015), Yanase et al. (2020)

two competing mechanisms (+) drying by radiative subsidence (-) homogenization by cold pools

- Aggregated: extensive dry FT & BL suppress convective triggering by cold pools. Dry patch grows through positive moisture-LW radiative feedback.
- Scattered: BL isn't dry & extensive enough to suppress convection triggered by cold pools. Convection develops in dry patch & destroys dry anomalies in FT.

shading: BL moisture

Discussion: comparison of SA indices

PW at Day 100 (pink ctr: precipitation, 10 mm/d)

lorg: convective clustering related to <u>clod pool dynamics</u> [smaller, shorter time scale] **R**_{free}: convective clustering related to <u>moisture</u> [larger, longer time scale

Selected References

- Hung, C.-S., & Miura, H. (2021). Ensemble of radiativeconvective equilibrium simulations near the aggregated and scattered boundary. GRL
- Yanase, T., Nishizawa, S., Miura, H., Takemi, T., & Tomita, H. (2020). New critical length for the onset of self-aggregation of moist convection. *GRL*
- Wing, A. A., et al. (2020). Clouds and convective selfaggregation in a multimodel ensemble of radiativeconvective equilibrium simulations. *JAMES*
- Coppin, D., & Bony, S. (2015). Physical mechanisms controlling the initiation of convective self-aggregation in a General Circulation Model. JAMES

Animation for Simulation

https://www.youtube.com/playlist ?list=PL7wzejGggNumal-15z199J5hBSs4YhlZx