Sources of Uncertainty in Climate Projections

Ethan Gutmann, Martyn Clark, Jeffrey Arnold, Clara Desser, Kyoko Ikeda, Roy Rasmussen, et al.
“Uncertainty is an uncomfortable position. But certainty is an absurd one.”

-Voltaire
Revealing the uncertainties

- Emissions Scenario(s)
- Global Climate Model(s)
- Natural Variability
- Downscaling method(s)
- Hydrologic Model Structure(s)
- Combined uncertainty
- Hydrologic Model Parameter(s)
Revealing the uncertainties

Emissions Scenario(s) → Global Climate Model(s) → Natural Variability

Combined uncertainty

PDF

scenarios

PDF

models

PDF

ens. members

PDF

methods

PDF

structure

PDF

calibration

Hydrologic Model Structure(s)

Hydrologic Model Parameter(s)

PDF

projections

Downscaling method(s)
What will the future look like?

Warmer Air Temperature (mostly)

Wetter And Drier... (Sometimes?)
Representation of Climate Change

- Problems with historical fidelity aside...
- How do different methods represent climate change.
- Statistical methods are almost identical.
- Dynamical simulation is very different.
A dichotomy of downscaling options

False

- Statistical downscaling based on rescaling GCM outputs
 - BCSD, BCCA, AR

- Statistical downscaling based on GCM dynamics (water vapor, wind, convective potential, etc.)
 - Regression-based methods
 - Analog methods

- Sophisticated circulation methods to relate the space-time variability of downscaled fields to synoptic scale atmospheric predictors (self-organized maps, etc.), possibly enhanced stochastically

- Dynamical downscaling using simple weather models

- Dynamical downscaling using state-of-the-art RCMs
The CESM Large Ensemble Variability in the Climate Signal

• CESM-LE simulates tremendous variability in precipitation changes

• Will this variability increase or decrease with a more sophisticated treatment of the physics?

• Initially selected two end members for WRF downscaling
 – Increasing Precipitation (Ens 2)
 – Decreasing Precipitation (Ens 30)

• Now adding 4 more
 – dashed lines + 2 not shown 6, 15, 34, and 35
 – 34 & 35 are new and stored hourly precip from CESM
Change in Annual Precipitation

Increasing Precipitation (Ens. 2)

Decreasing Precipitation (Ens. 30)

CESM 111km

WRF 4km

mm
ICAR Precipitation (Run with CESM)

ICAR (30 member average)

WRF (10 year average)
Uncertainty within Physics parameterizations
Uncertainty in Microphysics

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Description</th>
<th>Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ntc:</td>
<td>Droplet number concentration</td>
<td>50 cm$^{-3}$ – 1000 cm$^{-3}$ Clean air - Polluted</td>
<td>Related to Aerosol concentration</td>
</tr>
<tr>
<td>TNO:</td>
<td>Cloud ice number concentration parameterization</td>
<td>0.5 to 50</td>
<td>Vary deposition ice nucleation with a factor of 100.</td>
</tr>
<tr>
<td>a_v, b_v, f_v:</td>
<td>Snow fall speed parameters</td>
<td>Original Mitchell and Heymsfield (2005). Test: Locatelli and Hobbs (1974) used in other microphysical schemes.</td>
<td></td>
</tr>
<tr>
<td>a_v:</td>
<td>Cloud ice fall speed</td>
<td>Original: 1847 (Ferrier, 1994) Test: 700 (Ikawa and Saito, 1991).</td>
<td></td>
</tr>
<tr>
<td>c_{cube}:</td>
<td>Capacitance (ice, graupel and snow)</td>
<td>Original: 0.5 Test: 0.25 (Lin 2008)</td>
<td>Deposition and sublimation dependent on capacitance. Reduced c_{cube} based on Lin (2008)</td>
</tr>
<tr>
<td>Bigg:</td>
<td>Droplet freezing</td>
<td>0: Some aerosol types(?) -5: Default (most aerosol types) -10: Relatively clean air (some aerosol types)</td>
<td>Change the temperature for where droplet freezing occur</td>
</tr>
<tr>
<td>Ef_sw_l</td>
<td>Snow collecting cloud water.</td>
<td>Original: efficiency < 1 Test: efficiency = 1 (used in many microphysical schemes)</td>
<td>Variable collection efficiency based on median volume diameter of snow and cloud water.</td>
</tr>
</tbody>
</table>
Ideal Hill Case

- Varying all microphysical parameters results in large changes in precipitation
- (Some of these may be unrealistic...)

![Graph showing precipitation (mm/hr) vs. distance (km)]
• These changes affect a climate change signal strongly as well (2°C warming)
Parameter space

- Mapping these changes back to parameter space can suggest sensitive parameters for further evaluation.
- Most important parameters are related to conversion efficiency:
 - conversion of cloud ice to snow flakes.
Summary

- Uncertainty in GCM and Internal variability
- Uncertainties in downscaling scheme are significant
- Uncertainty in physics parameters may be large