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Under WCRP Data Advisory Council 
(WDAC) 

¨  Discussion of need for coordination and highlighting surface flux issues 
¤  Land, ocean, ice 
¤  Biogeochemical, heat, moisture, momentum 
¤  Turbulent, radiative 
¤  In situ, remote 

¨  “promote a stronger dialogue and profile of flux efforts across WCRP 
and with sister programmes “ 

¨  Formed Surface Flux Task Team (C. A. Clayson/Brian Ward, chairs) 
¤  Cuts across GEWEX, CLIVAR, other WCRP groups 
¤  Members:  

n  Carlos Jimenez (Observatoire de Paris, land, satellite, obs; 
n  Jim Edson (U. Conn, ocean, obs);  
n  Pierre-Philippe Mathieu (ESRIN, satellite);  
n  Peter Gleckler (LLNL, modeling);  
n  Ronald Buss de Souza (National Institute for Space Research, Brazil, ocean, obs) 
n  Paul Stackhouse (NASA Langley, radiative fluxes, satellite, scientist extraordinaire);  
n  Hans Peter Schmid (Karlsruhe Inst. Tech., biosphere, obs);  
n  Anton Beljaars (ECMWF,  land, modeling);  
n  Saigusa Nobuko (Japan, National Inst. for Env. Studies, land, obs); 
n  Petra Heil (University of Tasmania, sea ice, obs, remote sensing, modeling); 



SeaFlux 
¨  Interna'onal	project	under	the	auspices	of	the	GEWEX	Data	and	Assessments	

Panel:	to	improve	our	understanding	and	determina0on	of	ocean	surface	
turbulent	fluxes	

¨  Our	main	ques'ons:	
¤  What	is	feasible	in	terms	of	resolu'on	and	length-of-'me	series	for	satellite	data?	
¤  Can	we	produce	a	high	resolu'on	dataset	using	satellites	that	is	beEer	than	

conven'onal	climatology	and	NWP	products?	
¤  What	are	the	best	methods	for	crea'ng	this	dataset?	
¤  How	do	the	different	datasets	perform	under	varying	applica'ons?	

¨  Elements	of	the	project	include:	
¤  Evalua'on	of	global	flux	products	
¤  Providing	library	of	flux	datasets	and	in	situ	data	sets	for	easy	comparisons	by	

researchers	
¤  Produc'on	of	a	high-resolu'on	(1o,	3	hourly)	turbulent	flux	dataset	



SeaFlux CDR version 2 
¨  Near-surface air temperature, humidity, and 

winds 
¤  Based on Roberts et al. (2010) neural net technique 

n  CLW content used to remove rain-contamination (except 
for F08) 

n  F10 – F18, pixels segregated by clear/cloudy sky 
n  One neural net for F08, two for all others (total) 

¤  SSM/I and SSMIS from CSU FCDR 
¨  SST 

¤  Pre-dawn based on Reynolds OISST 
¤  Diurnal correction 
¤  Uses SRB, CERES, FLASHFlux for radiation, HOAPS, 

GPCP for precipitation 
¨  Land mask from NOAA GSHHG, ice mask 

from AVHRR ice fraction, ISCCP ice shelf 
¨  Uses neural net version of COARE 
¨  Gap-filling methodology -- use of MERRA2 

variability – 3 hour 

¨  Available from 1988 through mid-2016 

1999 Latent Heat Flux 

1999 Sensible Heat Flux 



Changes with satellites 



Changes with satellites 



Changes with satellites 



Qa variability 

40 N – 40 S average 
(area weighted) 

Global ocean average 
(area weighted) 



Wind Speed variability 

40 N – 40 S average 
(area weighted) 

Global ocean average 
(area weighted) 



Wind Speed variability 

40 N – 40 S average 
(area weighted) 

Global ocean average 
(area weighted) 



Comparisons with eddy covariance fluxes 

Bias: 2.1 W m-2 

Std Error: 38 W m-2 
Bias: -3.1 W m-2 

Std Error: 13.2 W m-2 

Here we do comparison with eddy covariance fluxes from research 
vessels -- they are our “ground truth” 



Bias: -0.21 m s-1 

Std Error: 2.17 m s-1 

Bias: 0.37 o C 

Std Error: 1.67 o C 

Bias: 0.09 o C 

Std Error: 1.43 o C 
Bias: 0.33 g kg-1 

Std Error: 1.69 g kg-1 

Comparison of SeaFlux derived parameters with ICOADS Value-Added Database 
(ships of opportunity) 



Evaluating uncertainty using IVAD data 
Wind Speed 

Ts-Ta 

Qs-Qa 



Instantaneous error estimates 



Uncertainty estimates of 10-year means 

Variable Global uncertainty 

LHF (W m-2) 8.2 (9%) 

SHF (W m-2) 4.2 (24%) 

Windspeed (m s-1) 0.39 (5.2%) 

Qa (g kg-1) 0.45 (4.0%) 

SST (oC) 0.12 (< 1%) 

Ta (oC) 0.35 ( 2%) 

Ts - Ta (oC) 0.44 (33%) 

Qs - Qa (g kg-1) 0.27 (8.2%) 

!1!
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Regional biases (Qs-Qa) 

•  Different products show strong regional 
patterns of biases compared to IVAD 

•  QSQA biases are driven primarily by 
differences in Qa retrievals rather than SST 

•  GSSTF v3, HOAPS v2, and JOFURO v2 all 
show a similar large scale pattern of biases, 
with strong regional signatures over the 
subtropical trade wind regimes and West 
Pacific STCZ 

•  IFREMER v4 and SeaFlux-V1 show muted 
regional signature, but they are still evident 



Retrieval biases and 
weather states 

¨  The structure in the retrieval (Qa, top) biases 
appear to be co-aligned with patterns of cloud 
weather states (defined by ISCCP cloud-top 
histograms) 

•  The largest biases in several of the Qa 
retrievals are aligned best with  Global WS 7 
(Tselioudis et al. 2012) – mostly clear, with thin 
boundary layer clouds 



Cloud impacts on passive microwave 
empirical retrieval algorithms 

¨  Near-surface Qa, Ta, and 
wind speed retrievals show 
strong regime-dependent 
conditional biases 

¨  Conditional-RMS also 
appears dependent on 
cloud weather state, but to 
lesser extent 

¨  When the underlying 
component of the 
conditional biases are 
regionally dependent, it is 
likely the application of 
“grouped” retrievals will 
result in regional biases 

Binned Qa and Wspd vs. observed F15 TBs 



New opportunities 

¨  Passive microwave provide direct 
information on the clouds in 
atmospheric FOV 

¨  We can decompose the 
observed , TBobs,  into clear-sky 
and cloudy-residual components 

        TBobs = TBclr + TBcld  

¨  Then retrieve using 

      {Qa,Ta,Wspd,SST} = F-1(TBclr) 
¨  Conditional-bias and RMS of 

near-surface parameters against 
the Clear-Sky TB appear smaller 
and more consistent across all of 
the weather regimes 

Binned Qa and Wspd vs. Clear-Sky simulated F15 TBs 



Final thoughts 

There are multiple challenges at present for the development of accurate, precise, 
and consistent climate data records of turbulent latent and sensible heat fluxes. 

q  Large conditional/regional biases affect current remote sensing based 
estimates of near-surface air temperature and humidity, particularly under 
different cloud regimes 

q  Changes in the passive microwave observing system can generate anomalous 
variability in estimated turbulent fluxes: 

q  New advances are being made to address the development of climate-quality 
turbulent fluxes from remote sensing, including: 

1.  Data Fusion 
2.  New sensor development 

3.  New approaches to handling cloud impacts on microwave TBs 
4.  Improved sampling and analysis/blending techniques  


