Multi-Year Distributed “LoCo” Monitoring
Multi-Year Distributed “LoCo” Monitoring

• Coupled land-atmosphere behaviors/feedbacks (via water and energy cycles) are poorly quantified.
Multi-Year Distributed “LoCo” Monitoring

• Coupled land-atmosphere behaviors/feedbacks (via water and energy cycles) are poorly quantified.
 – Need co-located measurement of land states, surface fluxes, near surface atmospheric states and daytime boundary layer characteristics/evolution.
Multi-Year Distributed “LoCo” Monitoring

• Coupled land-atmosphere behaviors/feedbacks (via water and energy cycles) are poorly quantified.
 – Need co-located measurement of land states, surface fluxes, near surface atmospheric states and daytime boundary layer characteristics/evolution.

• Models “do” them, but we don’t know if they are done well.
Multi-Year Distributed “LoCo” Monitoring

• Coupled land-atmosphere behaviors/feedbacks (via water and energy cycles) are poorly quantified.
 – Need co-located measurement of land states, surface fluxes, near surface atmospheric states and daytime boundary layer characteristics/evolution.

• Models “do” them, but we don’t know if they are done well.
 – Spatial patterns, temporal variability, intensity, land leg, atmosphere leg, how do they interact with climate anomalies, what drives regime changes.
Multi-Year Distributed “LoCo” Monitoring

• Coupled land-atmosphere behaviors/feedbacks (via water and energy cycles) are poorly quantified.
 – Need co-located measurement of land states, surface fluxes, near surface atmospheric states and daytime boundary layer characteristics/evolution.

• Models “do” them, but we don’t know if they are done well.
 – Spatial patterns, temporal variability, intensity, land leg, atmosphere leg, how do they interact with climate anomalies, what drives regime changes.

• Theory says “hotspots” for local coupled feedbacks are semi-arid/semi-humid regions, with ample net radiation, seasonal precipitation (The West).
 – Bearing strongest on regions with persistent hydrologic anomalies (The West).
Multi-Year Distributed “LoCo” Monitoring

• Coupled land-atmosphere behaviors/feedbacks (via water and energy cycles) are poorly quantified.
 – Need co-located measurement of land states, surface fluxes, near surface atmospheric states and daytime boundary layer characteristics/evolution.

• Models “do” them, but we don’t know if they are done well.
 – Spatial patterns, temporal variability, intensity, land leg, atmosphere leg, how do they interact with climate anomalies, what drives regime changes.

• Theory says “hotspots” for local coupled feedbacks are semi-arid/semi-humid regions, with ample net radiation, seasonal precipitation (The West).
 – Bearing strongest on regions with persistent hydrologic anomalies (The West).
Multi-Year Distributed “LoCo” Monitoring

• Coupled land-atmosphere behaviors/feedbacks (via water and energy cycles) are poorly quantified.
 – Need co-located measurement of land states, surface fluxes, near surface atmospheric states and daytime boundary layer characteristics/evolution.

• Models “do” them, but we don’t know if they are done well.
 – Spatial patterns, temporal variability, intensity, land leg, atmosphere leg, how do they interact with climate anomalies, what drives regime changes.

• Theory says “hotspots” for local coupled feedbacks are semi-arid/semi-humid regions, with ample net radiation, seasonal precipitation (The West).
 – Bearing strongest on regions with persistent hydrologic anomalies (The West).

• Improved understanding → improved models → improved forecasts