Impacts of climate change on water resources and interactions with human needs

Dieter Gerten

Research Domain of Earth System Analysis, Potsdam Institute for Climate Impact Research Potsdam, Germany

gerten@pik-potsdam.de

I will...

- Point to recent "clusters" of research on climate change impacts upon water resources
- Demonstrate the ever-increasing complexity
- Use some examples from LPJmL model applications
- ➢ Give some indications of how climate change interferes with water demand (→ modelling challenges)

The classic: changes in runoff by 2050/2100

ELSEVIER	Global Environmental Change 14 (2004) 31-52	GLOBAL ENVIRONMENTAL CHANGE	SRES/RCPs → GCMs → GHMs
Climate char	nge and global water resources: SR socio-economic scenarios	ES emissions and	
Nigel W. Arnell School of Geography, University of Southampton, Southampton SO17 1BJ, DOI 10.1007/s10584-013-0948-4			
Earth Syst. Dynam., 4, 129–144, 2013 www.earth-syst-dynam.net/4/129/2013/ doi:10.5194/esd-4-129-2013 © Author(s) 2013. CC Attribution 3.0 License.		The global-scale impacts of climate change on water resources and flooding under new climate and socio-economic scenarios Nigel W. Arnell • Ben Lloyd-Hughes	
Climate change impact on available water resources obtained using multiple global climate and hydrology models S. Hagemann ¹ , C. Chen ¹ , D. B. Clark ² , S. Folwell ² , S. N. Gosling ³ , I. Haddeland ⁴ , N. Hanasaki ⁵ , J. Heinke ⁶ , F. Ludwig ⁷ , F. Voss ⁸ , and A. J. Wiltshire ⁹			

The climate policy focus: impacts at +2–5°C

LPJmL

+5.0°C (business-as-usual scenario) future projections

Risk of lower water availability and/or more droughts (given 19 climate models)

The ensemble view: lessons from ISIMIP

www.isimip.org

>100 global and regional impact models

climate projections RCP scenarios from CMIP & CORDEX archives

Socio-economic input SSP scenarios

Impact models global & regional

agriculture biomes coastal infrastructure fisheries agro-economics

water Forests health energy permafrost

- Synthesis of impacts at different levels of global warming
- Quantification of uncertainties
- Model improvement
- Cross-sectoral interactions
- Cross-scale intercomparison
- Focus topics (e.g. extreme events, adaptation)

Project phases: I Fast-Track • IIa Historical runs • IIb 1,5K warming

The ensemble view: lessons from ISIMIP

2095

Societal impacts I: water scarcity

Climate change effect upon exposure to water scarcity, SRESA1b, MacPDM model

Consistency (Decrease, WSI, 2050)

Gosling et al., *Clim. Ch.* 2016

Societal impacts II: water for food production

Falkenmark 1989 Blue water availability <1,000 m³ cap⁻¹ yr⁻¹: chronic water scarcity

Gerten et al. 2011 Blue + green water-for-food availability (green =: ET on cropland) 400–4000 m³ cap⁻¹ yr⁻¹ for growing balanced diet (3,000 kcal cap⁻¹ d⁻¹) depending on local "water productivity" (yield produced per unit of water)

Societal impacts II: green+blue water for food

Ensemble median change given 17 climate models, SRES A2

% change in food water demand (water productivity) without CO_2 effects, current management

Societal impacts II: green+blue water for food

Climate model ensemble average, A2r population scenario

~6 billion people (43-50% of world population) in water-limited countries

Today

1.7 billion (28%)

Sectoral water demand in the future

Indicative estimates of sectoral blue water consumption, 2050s (conservative and highly uncertain!):

Current total blue water consumption: 1,600 km³/yr Various sources Future demand for food production: 2,300 km³/yr Falkenmark & Lannerstad 2010 (~10 billion people) Possible consumption for bioenergy: 2,000 km³/yr Various sources Future industrial & domestic demand: 500 km³/yr Wada et al 2015 Total (future): <u>4,800 km³/yr</u>

Ecologic effects I: direct CO₂ effects

Coupled processes in the LPJmL model

Interacting effects

Irrigation effect on environmental flows

Sustainable water use can balance yield loss

Scenario for all cropland:

- avoid 50% soil evaporation
- harvest 50% of runoff
- upgrade irrigation systems
- expand irrigation with the saved water

 → no additional water required,
i.e. environmental flows are respected Jägermeyr et al., *HESS* 2015, *ERL* 2016

→ Increase of global crop yield by ~40%
→ Reduction of global water consumption by ~500 km³/yr

Impacts of and feedbacks with climate change

Impacts of and feedbacks with climate change

CC impacts buffered by water management

Some missing links: dynamic feedbacks to CC

Some conclusions

- Many climate impacts studies, more and more ensemble-based (GCMs + GHMs)
- Increasingly complex modelling of human processes (demand, management, ...)
- Huge uncertainty in demand modelling approaches (and datasets)
- Climate impacts upon these human interactions rarely studied or ,hidden' in IAMs
- Feedbacks from management changes to climate largely unexplored (save irrigation effects)
- Thus, online simulations needed (single-model)

> Yet, conceptualisation of demand is decisive (\rightarrow intercomparisons)

On the relevance of the agenda...

Raworth et al., *Oxfam Report* 2012