THE EBRO RIVER:
SAME BASIN, DIFFERENT SYSTEM.

P. Quintana Seguí¹ and A. Barella Ortiz¹,²
 1. Ebro Observatory (Ramon Llull Univ. - CSIC)
 2. Castille-La Mancha University.
This presentation was prepared for the following workshop:

Including Water Management in Large Scale Models
Gif-sur-Yvette, France | 28-30 September 2016

A workshop co-sponsored by GEWEX’s GLASS and GHP
The Ebro basin

Largest Mediterranean river of Spain.

- ~86,000 km²

Iberian river with highest mean flow.

- ~14,000 hm³/y (natural flow)

River managed by the “Hydrographic Confederacy of the Ebro” (CHE, in Spanish).
Precipitation

- Uneven distribution of precipitation
- Very dry central valley (~200 mm/y).

Precipitation is concentrated on the relief (> 1500 mm/y on the Pyrenees) and the northwestern part of the basin.
Runoff generation

Agricultural areas are located in the valleys, far from where the water resources are generated.

Water resources are mostly generated on the northern relief.

Large scale models often have a crude description of the relief.
High diversity of landscapes and, thus, of hydrological processes.

Models must be able to correctly simulate processes in semi-arid areas, forests, high mountains, agricultural plains, etc.
The natural regime at Tortosa (outlet)

- Mediterranean regime.
- Intra and inter-annual variability.
- Low flows in summer.
- High flows in autumn-winter (ONDJ) and spring (AM).
- Spring flow includes melting.
Current water demands and uses

- **High Water Exploitation Index:**
 - consumptive use of water is >34% of the average long term renewable resources of the basin.
 - other Spanish basins have even higher WEI.

- **Water resources are mainly managed using dams.**
 - ~97% of the supply comes from **surface waters**.
 - Underground water represents ~3% of the supply.
 - The total **dam capacity**: 7600 hm³ (54% of the outlet’s annual mean flow, ~14.000 hm³).

- **Total demand** is 58% of the annual mean flow.
- Demand is **currently not satisfied** in 875 hm³/y.
 - Not enough resources available (south), lack of regulation (north).

<table>
<thead>
<tr>
<th>Sector</th>
<th>Demand (hm³/y)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture</td>
<td>7680,6</td>
<td>94%</td>
</tr>
<tr>
<td>Industry</td>
<td>147,3</td>
<td>2%</td>
</tr>
<tr>
<td>Urban</td>
<td>357,6</td>
<td>4%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>8185,5</td>
<td></td>
</tr>
</tbody>
</table>

source: CHE
Agriculture

Agriculture is concentrated in the valleys.

Diversity of crops.

Water is needed mainly in spring and summer.

Water is stocked in dams and transported through the river and canal networks.
Large infrastructures have been built in order to guarantee the supply of water for irrigation.
Dam construction starts after the Spanish Civil War, in the 1940s. Major dams were constructed in the 1960s.
Actual water storage in dams is lower than dam capacity.

It depends on climate, management, etc.
New offer and increased demand go hand in hand.

Increased demand can be explained by:

- Increased irrigated area.
- Intensification and increased productivity.
- New crops.
- New technologies.

<table>
<thead>
<tr>
<th>Decade</th>
<th>Lower Ebro</th>
<th>Middle Ebro</th>
<th>Upper Ebro</th>
</tr>
</thead>
<tbody>
<tr>
<td>1951</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1956</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>1961</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>1966</td>
<td>400</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>1971</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>1976</td>
<td>600</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>1981</td>
<td>700</td>
<td>700</td>
<td>700</td>
</tr>
<tr>
<td>1986</td>
<td>800</td>
<td>800</td>
<td>800</td>
</tr>
<tr>
<td>1991</td>
<td>900</td>
<td>900</td>
<td>900</td>
</tr>
</tbody>
</table>

Currently irrigated surface is 966,000 ha. (source CHE)

Change between 1990 and 1950 (1950 is 100).

<table>
<thead>
<tr>
<th>Category</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production</td>
<td>348</td>
</tr>
<tr>
<td>Surface</td>
<td>160</td>
</tr>
<tr>
<td>Prod/ha</td>
<td>217</td>
</tr>
</tbody>
</table>

Source: Pinilla (2006)
Impacts of modern irrigation systems

Different methods, different impacts on the water balance.

The case of the Alto Aragon (Lecina et al., 2010)

- Traditional irrigation (73%) and sprinkler systems (27%).
- Farmers are switching to sprinkler systems which:
 - increase crop yields
 - cause more intense cropping patterns.
 - increase crop evapotranspiration and non-beneficial evapotranspiration per unit area!

- As a consequence:
 - Increased water depletion and water use.
 - Higher productivity.
 - Lower return flows: improvements in the quality of the receiving water bodies.
 - Water productivity computed over water depletion will not vary with irrigation modernization.
Anthropic impacts on the river flow

Current management practices have altered the river regime.
Negative trends in river flow

- Negative trends in almost all percentiles.
- Decreased variability.
- Lower peak flows, decreased floods.
- Low flows depend on environmental flow regulation.
Anthropic impacts on river flow

The decrease of flow is not so pronounced in the Pyrenees.

The basin is becoming more dependant on the Pyrenean runoff.

This is a problem under climate change:

- Decreased snowfall.
- Increased evapotranspiration in the headwaters.

López-Moreno et al., 2011.
Abandonment of agricultural areas in the headwaters is causing an increase in forested area, which increases evapotranspiration and decreases runoff generation in the Pyrenees.

Revegetation is far to be concluded, it is expected to continue.

López-Moreno et al., 2011.
Climate Change vs direct impacts.

It is already possible to estimate the contribution of climate change.

Segre Basin

Fig. 12. Observed percentage change in monthly streamflow from 1951 to 2013, and predicted percentage change according to climatic changes alone. Asterisk indicates a statistically significant difference ($p < 0.05$) between observed and predicted changes.
Observed river flow trends

Observed trends in monthly river flows are caused by:

- Water management.
- LULC.
- Climate change.

Lorenzo-Lacruz et al., 2012.
Sediment transport.

Dams are causing changes in sediment transport.

The sediment load of the lower Ebro was reduced by 95–99% (Rovira and Ibàñez, 2007; Tena and Batalla, 2013).

Sediments are needed to compensate for subsidence and sea-level rise.

Source: C. Ibàñez.

Operational and structural changes are needed in order to manage sediment flow (Rovira and Ibàñez, 2007).
Climate Change.

Delta of annual precipitation (%)
Delta of real evapotranspiration (%)
Delta of natural river flow (%)

Change in the available water resources (%) in comparison to 1961-1990.

CEDEX (2010, 2012)

A2 emissions scenario; 2071-2100.

Precipitation ↓
Evapotranspiration: ↑ Pyrenees, ↓ Valley
River-flow ↓

Other expected changes:
- Possible increase in extreme events.
- Decreased snowfall.
- Longer summer dry spells.

Water resources will decrease.
Is current and planned irrigation sustainable?

Milano et al. (2013):

- In 2050, water resources are projected to decrease by 15–35% during spring and summer.
- Growing competition among users and severe water shortages for irrigated agriculture.

Current policies stipulate that demand should increase from 7700 hm3/y (2013) to 9800 hm3/y (2033) +27%!

New dams are not expected.

Planned expansion of irrigation in the basin.

Expansion of irrigation demand does not seem realistic according to climate scenarios.
Simulation of the real Ebro basin.

Modeling the Ebro in natural conditions is a challenging task.

- Rich hydrological behaviour.
- Importance of relief and snowpack.
- Snowpack.

Relief and snow are challenging for global models.

Modeling the real basin is even more challenging!
Simulation of the real basin.

Models must be able to simulate the main direct human influences:

- Dams, canals, irrigation and land-use.
- Climate Change.

These change in time.

Dams and canals can be simulated by means of management rules or forcing them with observed data.

In order to simulate the impact of **irrigation**, it is necessary to take into account the wide variety of crops and irrigation methods.

Remote sensing can provide information on land-use change, irrigation (Escorihuela and Quintana-Seguí, 2016), etc.
The SAFRAN-SURFEX-RAPID model.

Based on SURFEX LSM (5 km) and similar to Météo-France’s SIM (Habets et al., 2008).

SAFRAN meteorological forcing dataset (Quintana-Seguí et al 2016a, 2016b):

- all necessary variables to force a LSM (5 km, 35 years).
- Public dataset. (HyMeX database).

Currently the model simulates the natural system, however the RAPID River routing scheme is able to simulate dams (Cédric et al. 2011a, 2011b).

Next steps:
1. In depth validation and improvement of key processes.
2. Inclusion of dams and irrigation.

Opportunity for collaboration:
Implementation, testing and comparison of different methodologies and models.
Conclusions.

- Human impacts on the Ebro basin are large, have been increasing and are expected to increase even more.
 - Dams, canals and irrigation.
 - Land-use and land-cover change.
 - Increased disassociation between climate and river-flow.
 - Declining river-flow (mean and extreme).
 - Modified water balance and river regime.

- An understanding of the hydrology of this basin requires an understanding of human induced processes, their impacts and feedbacks.

- We can use the Ebro as a laboratory in order to improve our knowledge on these issues and also for improving, testing and comparing our models.
The Ebro as a laboratory.

1. The Ebro is a representative Mediterranean basin.
2. Example of human influence in an hydrological system.
3. Data is available (dam inflow and outflow, etc.).
4. There is some momentum:
 a. Projects: HyMeX, E2O, MARCO, etc.
 b. Models: SURFEX, LEAFHYDRO, ORCHIDEE, ...

The following subjects could be studied in a project that could use the Ebro as a laboratory (maybe within a larger project):

1. Irrigation and dam schemes.
2. Land-use and land-cover changes.
3. Physical processes relevant in the Mediterranean: snow, semi-arid areas, extremes, etc.
4. Feedbacks between the human influence and the natural system.

This workshop offers an opportunity to discuss the science behind such a project and also funding options.
Thank You!

Ebro river at Miravet (Catalonia).

pquintana@obsebre.es
http://www.obsebre.es
http://pere.quintanasegui.com
CEDEX. (2012). Efecto del cambio climático en los recursos hídricos disponibles en los sistemas de explotación.

